Grokking Machine Learning Kitabının Özeti




Kitabın Bölümleri ve Kısa Açıklamaları

1. Makine Öğrenimi Nedir?

Makine öğreniminin temel kavramlarını açıklar. Sağduyu ve bilgisayar tarafından yapılması dışında makine öğreniminin nasıl çalıştığını anlamaya yönelik bir giriş sunar.

2. Makine Öğrenimi Türleri

Denetimli öğrenme, denetimsiz öğrenme ve pekiştirmeli öğrenme gibi farklı makine öğrenimi türlerini açıklar. Etiketli ve etiketsiz veriler arasındaki farkları ve uygulama alanlarını anlatır.

3. Noktalarımıza Yakın Bir Çizgi Çizmek: Doğrusal Regresyon

Doğrusal regresyon yöntemini ve bunun bir evin fiyatını tahmin etme gibi uygulamalarını açıklar. Model oluşturma, hata fonksiyonu ve polinom regresyon gibi konuları ele alır.

4. Eğitim Sürecini Optimize Etme: Yetersiz Uyum, Aşırı Uyum, Test Etme ve Düzenleme

Modelin yetersiz uyum ve aşırı uyum problemlerini çözmek için kullanılan teknikleri tartışır. Model karmaşıklığı, doğrulama seti ve düzenli hale getirme konularını kapsar.

5. Noktalarımızı Bölmek için Çizgileri Kullanma: Perceptron Algoritması

Perceptron algoritmasını ve bunun sınıflandırma problemlerindeki uygulamalarını açıklar. Perceptron algoritmasının kodlanması ve hata fonksiyonu ile ilgili detaylar verir.

6. Noktaları Bölmek için Sürekli Bir Yaklaşım: Lojistik Sınıflandırıcılar

Lojistik sınıflandırıcıların ve lojistik regresyon algoritmasının nasıl çalıştığını anlatır. Ayrıca birden fazla sınıfa sınıflandırma için softmax fonksiyonunu açıklar.

7. Sınıflandırma Modellerini Nasıl Ölçersiniz? Doğruluk ve Arkadaşları

Model değerlendirme metriklerini, doğruluğu ve farklı hata türlerini tanıtır. Alıcı işletim karakteristiği (ROC) eğrisi gibi değerlendirme araçlarını açıklar.

8. Olasılığı Maksimumda Kullanmak: Naif Bayes Modeli

Naif Bayes modelini ve bunun spam algılama gibi uygulamalarını tartışır. Bayes teoreminin temel kavramlarını ve model oluşturma sürecini açıklar.

9. Soru Sorarak Verileri Bölme: Karar Ağaçları

Karar ağaçlarının nasıl çalıştığını ve bunların uygulamalarını anlatır. Karar ağaçları ile sınıflandırma ve regresyon problemlerinin nasıl çözülebileceğini açıklar.

10. Daha Fazla Güç Elde Etmek için Yapı Taşlarının Birleştirilmesi: Sinir Ağları

Sinir ağlarının temel kavramlarını ve bunların uygulamalarını tanıtır. Keras kullanarak sinir ağlarını kodlama ve eğitim süreçlerini açıklar.

11. Stil ile Sınırları Bulma: Destek Vektör Makineleri ve Çekirdek Yöntemi

Destek vektör makinelerinin ve çekirdek yönteminin nasıl çalıştığını anlatır. Scikit-Learn ile destek vektör makinelerinin kodlanması ve uygulamaları üzerinde durur.

12. Sonuçları Maksimize Etmek için Modelleri Birleştirme: Toplu Öğrenme

Toplu öğrenme yöntemlerini ve bunların güçlerini açıklar. Torbalama, AdaBoost ve Gradyan artırma gibi teknikleri tanıtır.

13. Tüm Bunları Uygulamaya Koymak: Gerçek Hayattan Bir Veri Örneği

Gerçek bir veri seti üzerinde makine öğrenimi modellerini uygulamalı olarak gösterir. Veri temizleme, özellik mühendisliği ve model eğitimi gibi adımları içerir.

Ekler

  • Ek A: Her bölümün alıştırmalarının çözümleri
  • Ek B: Teknik matematiksel türevler
  • Ek C: Tavsiye edilen referanslar ve kaynaklar

Bu kitabın amacı, okuyucuları makine öğrenimi modelleri ve bu modellerin nasıl kullanılacağı konusunda kapsamlı bir şekilde bilgilendirmektir. Her bölüm, belirli bir modeli veya tekniği derinlemesine inceler ve pratik örnekler ve alıştırmalar sunar.


1. Bölüm: Makine Öğrenimi Nedir?

Bu bölümde, makine öğrenimi kavramının temelleri ve bu teknolojinin nasıl çalıştığı üzerine odaklanılmaktadır.

İçindekiler:

  • Makine Öğrenimi Nedir? Makine öğreniminin, bilgisayarların problemleri çözme ve kararlar alma yeteneği ile ilgili olduğunu açıklar. Temel olarak, bir bilgisayarın, insanlarınkine benzer şekilde veri ve deneyimlerden öğrenme yeteneğine sahip olmasıdır.

  • Makine Öğrenimi Zor mu? Bu bölümde, makine öğreniminin anlaşılması ve uygulanmasının zor olmadığı vurgulanır. Temel matematik bilgisi ve sağduyu ile bu teknolojinin öğrenilebileceği belirtilir.

  • Bu Kitapta Ne Öğreneceğiz? Kitapta, makine öğreniminin temel kavramları, algoritmalar ve bu algoritmaların gerçek dünya problemlerinde nasıl uygulanabileceği öğretilmektedir. Kitap boyunca okuyucular, sağduyu ve görsel sezgi ile desteklenen yöntemler aracılığıyla konuyu öğrenirler.

  • Yapay Zeka Nedir ve Makine Öğreniminden Farkı Nedir? Yapay zeka (AI) ve makine öğrenimi arasındaki farklar açıklanır. Makine öğrenimi, AI'nin bir alt kümesi olarak tanımlanır ve AI'nin, makine öğrenimi dışındaki yöntemleri de içerdiği belirtilir.

  • İnsanlar Nasıl Düşünür ve Bu Fikirleri Bir Makineye Nasıl Enjekte Edebiliriz? İnsan düşünme süreçlerinin nasıl çalıştığı ve bu süreçlerin bir bilgisayara nasıl aktarılabileceği üzerine tartışmalar yapılır. Bu, makine öğrenimi algoritmalarının temelini oluşturan bir konudur.

  • Gerçek Hayattan Bazı Temel Makine Öğrenimi Örnekleri Makine öğreniminin gerçek dünyadaki uygulamalarına dair örnekler verilir. Bu örnekler, okuyuculara konunun pratiğe dökülmüş halini görmeleri için yardımcı olur.

Özet:

Bu bölümde, makine öğreniminin temel kavramları, yapay zekadan farkı ve insan düşünme süreçlerinin bilgisayarlara nasıl aktarılabileceği üzerine genel bir giriş yapılmaktadır. Makine öğreniminin zor olmadığı, biraz temel matematik bilgisi ve sağduyu ile anlaşılabileceği vurgulanmaktadır .


2. Bölüm: Makine Öğrenimi Türleri

Bu bölümde makine öğreniminin farklı türleri tanıtılmaktadır. Denetimli öğrenme, denetimsiz öğrenme ve pekiştirmeli öğrenme gibi temel makine öğrenimi yaklaşımlarının ne olduğu ve nasıl çalıştığı açıklanmaktadır.

İçindekiler:

  • Denetimli Öğrenme: Denetimli öğrenmenin, etiketli veri kullanarak modeller oluşturmayı amaçladığını açıklar. Bu yöntem, veri noktalarının bilinen çıktılarla (etiketlerle) eşleştirilmesine dayanır. Örnekler arasında konut fiyatlarının tahmini ve e-posta spam tespiti yer alır.

  • Denetimsiz Öğrenme: Denetimsiz öğrenmenin, etiketsiz veri kullanarak veri içindeki gizli yapıları keşfetmeyi amaçladığını açıklar. Bu yöntem, veri noktalarının doğal olarak gruplanmasına veya belirli özelliklere göre sınıflandırılmasına dayanır. Örnekler arasında müşteri segmentasyonu ve anomali tespiti yer alır.

  • Pekiştirmeli Öğrenme: Pekiştirmeli öğrenmenin, bir ajanın belirli bir ortamda nasıl hareket edeceğini öğrenmesi gerektiğini açıklar. Bu yöntem, ödül ve ceza mekanizmaları kullanarak ajanın davranışlarını optimize eder. Örnekler arasında oyun oynama ve robotik kontrol yer alır.

  • Etiketli ve Etiketsiz Veriler: Etiketli ve etiketsiz veriler arasındaki farkı açıklar. Etiketli veriler, her veri noktasının bilinen bir etikete sahip olduğu verilerdir (örneğin, kedi/köpek sınıflandırması). Etiketsiz veriler ise bu tür etiketlere sahip olmayan verilerdir ve genellikle veri kümesi hakkında daha az bilgi içerir.

  • Sayısal ve Kategorik Veriler: Sayısal ve kategorik veriler arasındaki farkı açıklar. Sayısal veriler, sayılarla temsil edilen verilerdir (örneğin, fiyatlar, ağırlıklar). Kategorik veriler ise belirli kategoriler veya durumlarla temsil edilen verilerdir (örneğin, cinsiyet, hayvan türü).

Özet:

Bu bölümde, makine öğreniminin üç ana türü olan denetimli öğrenme, denetimsiz öğrenme ve pekiştirmeli öğrenme detaylandırılmaktadır. Ayrıca etiketli ve etiketsiz veriler, sayısal ve kategorik veriler gibi temel veri türleri hakkında bilgi verilmektedir .


3. Bölüm: Noktalarımıza Yakın Bir Çizgi Çizmek: Doğrusal Regresyon

Bu bölümde doğrusal regresyon yöntemi detaylandırılmaktadır. Doğrusal regresyon, bir veri kümesi üzerinde en iyi uyan doğrusal ilişkiyi bulmayı amaçlayan bir modelleme tekniğidir.

İçindekiler:

  • Doğrusal Regresyon Nedir? Doğrusal regresyonun temel kavramlarını ve nasıl çalıştığını açıklar. Basit bir doğrusal model, veri noktalarının etrafında en iyi uyumu sağlayan bir doğru çizerek verileri modellemeyi hedefler.

  • Bir Dizi Veri Noktasından Geçen Bir Doğrunun Uydurulması Doğrusal regresyon modelinin nasıl oluşturulduğunu ve veri noktalarına en iyi uyan doğrunun nasıl bulunduğunu açıklar. Bu süreçte en küçük kareler yöntemi kullanılır.

  • Python'da Doğrusal Regresyon Algoritmasının Kodlanması Doğrusal regresyon modelinin Python programlama dili kullanılarak nasıl kodlanacağını ve uygulanacağını gösterir. Bu kısımda, bir veri kümesi üzerinde doğrusal regresyon modeli oluşturma adım adım anlatılır.

  • Gerçek Bir Veri Kümesinde Konut Fiyatlarını Tahmin Etmek Üzere Doğrusal Bir Regresyon Modeli Oluşturmak için Turi Create Kullanarak Turi Create kütüphanesi kullanarak gerçek bir veri kümesi üzerinde doğrusal regresyon modeli oluşturma sürecini açıklar. Örnek olarak, konut fiyatlarını tahmin etmeye yönelik bir model oluşturulur.

  • Polinom Regresyonu Nedir? Doğrusal olmayan veri kümesine daha karmaşık bir eğri uydurmak için polinom regresyonunun nasıl kullanılacağını açıklar. Polinom regresyonu, verilerin daha karmaşık ilişkilerini modellemeye yardımcı olur.

  • Tıbbi Uygulamalar ve Tavsiye Sistemleri Gibi Gerçek Dünyadaki Doğrusal Regresyon Örneklerinin Tartışılması Doğrusal regresyonun tıbbi uygulamalar, tavsiye sistemleri ve diğer gerçek dünya problemlerindeki uygulamalarını tartışır. Bu örnekler, doğrusal regresyonun pratikte nasıl kullanıldığını gösterir.

Özet:

Bu bölüm, doğrusal regresyon modelinin temellerini ve uygulamalarını kapsar. Veri noktalarına en iyi uyan doğruyu bulmak, modeli Python'da kodlamak ve polinom regresyon gibi daha ileri teknikleri öğrenmek için adım adım rehberlik sağlar. Ayrıca, doğrusal regresyonun çeşitli gerçek dünya uygulamalarındaki kullanımlarını tartışır .


4. Bölüm: Eğitim Sürecini Optimize Etme: Yetersiz Uyum, Aşırı Uyum, Test Etme ve Düzenleme

Bu bölümde, makine öğrenimi modellerinin eğitim sürecinde karşılaşabilecekleri sorunlar ve bu sorunları çözmek için kullanılan teknikler ele alınmaktadır.

İçindekiler:

  • Yetersiz Uyum ve Aşırı Uyum Nedir? Yetersiz uyum (underfitting) ve aşırı uyum (overfitting) kavramlarını açıklar. Yetersiz uyum, modelin veriyi yeterince öğrenememesi durumudur. Aşırı uyum ise modelin eğitim verisine çok fazla uyum sağlaması ve bu nedenle yeni verilerde başarısız olmasıdır.

  • Model Karmaşıklığı ve Hata Oranı Model karmaşıklığının hata oranı üzerindeki etkisini açıklar. Daha karmaşık modellerin aşırı uyuma, daha basit modellerin ise yetersiz uyuma eğilimli olduğunu belirtir.

  • Test ve Doğrulama Setleri Modelin performansını değerlendirmek için kullanılan test ve doğrulama setlerini tanıtır. Eğitim, doğrulama ve test setlerinin nasıl ayrılacağını ve bu setlerin hangi amaçlarla kullanıldığını açıklar.

  • Düzenleme Teknikleri: L1 ve L2 Normları Düzenleme (regularization) tekniklerini açıklar. L1 ve L2 normlarının model karmaşıklığını nasıl kontrol ettiğini ve bu yöntemlerin aşırı uyum problemini nasıl çözdüğünü anlatır.

  • Model Karmaşıklığı ve Performans Grafikleri Model karmaşıklığı ile performans arasındaki ilişkiyi görselleştiren grafikler sunar. Bu grafikler, en iyi performansı elde etmek için model karmaşıklığının nasıl optimize edilebileceğini gösterir.

Özet:

Bu bölüm, makine öğrenimi modellerinin eğitim sürecinde karşılaşabilecekleri yetersiz uyum ve aşırı uyum gibi sorunları ve bu sorunları çözmek için kullanılan test, doğrulama ve düzenleme tekniklerini kapsamaktadır. Ayrıca, model karmaşıklığının performans üzerindeki etkisini ve bu karmaşıklığın nasıl optimize edilebileceğini açıklamaktadır .


5. Bölüm: Noktalarımızı Bölmek için Çizgileri Kullanma: Perceptron Algoritması

Bu bölümde perceptron algoritması detaylandırılmaktadır. Perceptron, makine öğrenimi ve yapay sinir ağlarının temel taşlarından biri olarak, iki sınıfı ayırmak için kullanılan basit bir algoritmadır.

İçindekiler:

  • Sınıflandırma Nedir? Sınıflandırma kavramını ve bunun makine öğrenimindeki önemini açıklar. Sınıflandırma, veri noktalarını belirli kategorilere ayırma işlemidir.

  • Duygu Analizi: Makine Öğrenmesini Kullanarak Bir Cümlenin Mutlu mu Yoksa Üzgün mü Olduğunu Nasıl Anlarız? Duygu analizini tanıtarak, metin verilerinin sınıflandırılması örneği üzerinde durur. Cümlelerin olumlu ya da olumsuz duygular içerip içermediğini belirlemek için makine öğrenimi kullanır.

  • İki Renkteki Noktaları Ayıran Bir Çizgi Nasıl Çizilir? Perceptron algoritmasının temelini oluşturan, iki sınıfı ayıran doğruyu nasıl bulacağımızı açıklar. Veri noktalarının farklı sınıflarına göre nasıl ayrılacağını ve bu çizginin nasıl oluşturulacağını gösterir.

  • Perceptron Nedir ve Onu Nasıl Eğitiriz? Perceptron algoritmasının nasıl çalıştığını ve nasıl eğitildiğini detaylandırır. Ağırlık güncelleme kuralları ve hata fonksiyonu gibi temel kavramları açıklar.

  • Python ve Turi Create'de Perceptron Algoritmasının Kodlanması Perceptron algoritmasını Python ve Turi Create kullanarak nasıl kodlayacağınızı ve uygulayacağınızı gösterir. Adım adım kodlama örnekleri sunar.

Özet:

Bu bölümde perceptron algoritmasının temelleri ve uygulamaları ele alınmaktadır. Perceptron, iki sınıfı ayıran çizgiyi bulmak için kullanılan basit ve etkili bir sınıflandırma algoritmasıdır. Duygu analizi gibi uygulamalarda nasıl kullanılacağı, Python ve Turi Create ile nasıl kodlanacağı adım adım anlatılmaktadır .


6. Bölüm: Noktaları Bölmek için Sürekli Bir Yaklaşım: Lojistik Sınıflandırıcılar

Bu bölümde lojistik sınıflandırıcıların temelleri ve uygulamaları ele alınmaktadır. Lojistik sınıflandırma, veri noktalarını belirli sınıflara ayırmak için kullanılan sürekli bir yaklaşımdır.

İçindekiler:

  • Lojistik Sınıflandırıcı Nedir? Lojistik sınıflandırıcıların temelini açıklar ve bu yöntemin sınıflandırma problemlerindeki önemini vurgular. Lojistik sınıflandırıcı, doğrusal bir sınıflandırıcının doğrusal olmayan verileri modellemesine olanak tanır.

  • Sigmoid Fonksiyonu: Sürekli Bir Aktivasyon Fonksiyonu Sigmoid fonksiyonunun, lojistik sınıflandırıcıların ana bileşeni olduğunu ve sürekli bir aktivasyon fonksiyonu olarak nasıl çalıştığını açıklar. Sigmoid fonksiyonu, girdileri 0 ile 1 arasında bir değere dönüştürür.

  • Lojistik Regresyon Algoritması Lojistik regresyon algoritmasının nasıl çalıştığını ve bu algoritmanın veri noktalarını sınıflandırmada nasıl kullanıldığını detaylandırır. Lojistik regresyonun, bir veri noktasının belirli bir sınıfa ait olma olasılığını tahmin ettiğini belirtir.

  • Python'da Lojistik Regresyon Algoritmasının Kodlanması Python programlama dili kullanarak lojistik regresyon algoritmasının nasıl kodlanacağını ve uygulanacağını gösterir. Adım adım kodlama örnekleri sunar.

  • Film Eleştirilerinin Duyarlılığını Analiz Etmek için Lojistik Sınıflandırıcı Kullanma Turi Create kütüphanesi kullanarak lojistik sınıflandırıcıların duygu analizi gibi uygulamalarda nasıl kullanılacağını açıklar. Film eleştirilerinin olumlu veya olumsuz olduğunu belirlemek için lojistik sınıflandırıcılar kullanılır.

  • İkiden Fazla Sınıf İçin Sınıflandırıcılar Oluşturmak Üzere Softmax İşlevini Kullanma Softmax fonksiyonunun, lojistik regresyonu ikiden fazla sınıfa genişletmek için nasıl kullanılacağını açıklar. Bu fonksiyon, her sınıf için olasılık tahminleri yapar ve en yüksek olasılığa sahip sınıfı seçer.

Özet:

Bu bölümde, lojistik sınıflandırıcıların temelleri ve uygulamaları detaylı bir şekilde ele alınmaktadır. Sigmoid fonksiyonu ve lojistik regresyon algoritmasının nasıl çalıştığı, Python'da nasıl kodlandığı ve duygu analizi gibi uygulamalarda nasıl kullanıldığı açıklanmaktadır. Ayrıca, softmax fonksiyonu kullanarak ikiden fazla sınıf için sınıflandırma yapma yöntemleri de anlatılmaktadır .


7. Bölüm: Sınıflandırma Modellerini Nasıl Ölçersiniz? Doğruluk ve Arkadaşları

Bu bölüm, sınıflandırma modellerinin performansını değerlendirmek için çeşitli teknikleri öğrenmeyi amaçlamaktadır. Bir makine öğrenimi uzmanı için modellerin performansını değerlendirmek, onları eğitmek kadar önemlidir.

İçindekiler:

  • Doğruluk: Bir modelin performansını ölçmenin en basit yolu doğruluğunu hesaplamaktır. Ancak, doğruluğun tek başına yeterli olmadığı ve bazı modellerin yüksek doğruluğa sahip olsa da iyi performans göstermeyebileceği belirtilir.

  • Kesinlik ve Geri Çağırma: Doğruluğun ötesine geçmek için kesinlik (precision) ve geri çağırma (recall) gibi metrikler tanıtılır. Kesinlik, pozitif olarak sınıflandırılan noktalar arasında doğru sınıflandırılanların oranıdır. Geri çağırma ise pozitif etiketli noktalar arasında doğru sınıflandırılanların oranıdır.

  • F-Skoru: Kesinlik ve geri çağırmanın bir araya geldiği daha güçlü bir metrik olan F-skoru tanıtılır. F-skoru, modelin performansını daha dengeli bir şekilde değerlendirir.

  • Duyarlılık ve Özgüllük: Tıbbi disiplinler gibi alanlarda yaygın olarak kullanılan duyarlılık (sensitivity) ve özgüllük (specificity) metrikleri açıklanır. Duyarlılık, pozitif vakaları doğru şekilde tanımlama yeteneğini ölçerken, özgüllük negatif vakaları doğru şekilde tanımlama yeteneğini ölçer.

  • Karışıklık Matrisi: Bir modelin yapabileceği hata türlerini ve bu hataları bir tabloya yerleştirerek karışıklık matrisinin nasıl oluşturulacağını açıklar. Yanlış pozitifler ve yanlış negatifler gibi hata türleri detaylandırılır.

  • ROC Eğrisi: Alıcı işletim karakteristiği (ROC) eğrisinin ne olduğu ve duyarlılık ve özgüllüğü aynı anda nasıl takip edebileceğimizi anlatır. ROC eğrisi, modellerimiz hakkında büyük bilgiler veren basit bir çizimdir.

Özet:

Bu bölümde, sınıflandırma modellerinin performansını değerlendirmek için kullanılan doğruluk, kesinlik, geri çağırma, F-skoru, duyarlılık ve özgüllük gibi çeşitli metrikler ve ROC eğrisi gibi araçlar detaylandırılmaktadır. Bu metrikler ve araçlar, modellerin kalitesini ölçmek ve en iyi performansı gösteren modeli seçmek için kullanılır .


8. Bölüm: Olasılığı Maksimum Düzeyde Kullanmak: Naif Bayes Modeli

Bu bölümde Naif Bayes modeli ve bu modelin olasılık temelli yaklaşımı açıklanmaktadır. Naif Bayes modeli, sınıflandırma problemlerinde kullanılan basit ama güçlü bir algoritmadır.

İçindekiler:

  • Naif Bayes Modeli Nedir? Naif Bayes modelinin temel kavramlarını ve nasıl çalıştığını açıklar. Bu model, sınıflandırma problemlerini çözmek için Bayes teoremini kullanır ve özelliklerin birbirinden bağımsız olduğunu varsayar.

  • Hasta mı Sağlıklı mı? Bayes Teoreminin Kahraman Olduğu Bir Hikaye Bayes teoreminin gerçek dünya uygulamalarına yönelik bir örnek verir. Sağlık durumlarını sınıflandırmak için Bayes teoremi kullanılarak nasıl tahminler yapılabileceği gösterilir.

  • Spam Algılama Modeli Naif Bayes modelinin bir uygulaması olarak spam algılama problemini ele alır. E-postaların spam olup olmadığını belirlemek için bu modelin nasıl kullanılacağını açıklar.

  • Gerçek Verilerle Bir Spam Algılama Modeli Oluşturma Naif Bayes modelinin gerçek veri setleri üzerinde nasıl uygulanacağını detaylandırır. Örnek olarak, spam algılama problemini çözmek için gerçek veriler kullanılarak model eğitilir ve test edilir.

Özet:

Bu bölümde, Naif Bayes modelinin temel prensipleri ve uygulamaları detaylı bir şekilde ele alınmaktadır. Bayes teoreminin kullanımı, sağlık durumu sınıflandırma ve spam algılama gibi örneklerle desteklenir. Gerçek verilerle model oluşturma süreci adım adım açıklanarak, okuyuculara modelin pratikte nasıl kullanılabileceği gösterilmektedir .


9. Bölüm: Soru Sorarak Verileri Bölme: Karar Ağaçları

Bu bölümde karar ağaçları ve bu modellerin veri sınıflandırma ve regresyon problemlerinde nasıl kullanıldığı ele alınmaktadır. Karar ağaçları, veriyi bölmek ve tahmin yapmak için bir dizi "evet" veya "hayır" sorusu kullanır.

İçindekiler:

  • Karar Ağacı Nedir? Karar ağaçlarının temel kavramlarını açıklar. Karar ağaçları, veriyi sınıflandırmak veya tahmin etmek için ardışık sorular soran ağaç yapısında bir modeldir.

  • Sınıflandırma ve Regresyon için Karar Ağaçları Karar ağaçlarının hem sınıflandırma hem de regresyon problemlerinde nasıl kullanıldığını açıklar. Sınıflandırma için karar ağaçları, veri noktalarını belirli kategorilere ayırırken, regresyon için karar ağaçları, sürekli değerler tahmin eder.

  • Kullanıcıların Bilgilerini Kullanarak Bir Uygulama Öneri Sistemi Oluşturmak Kullanıcıların verilerini kullanarak bir uygulama öneri sistemi geliştirme örneği sunar. Bu örnek, karar ağaçlarının pratik bir uygulamasını gösterir.

  • Doğruluk, Gini İndeksi ve Entropi Karar ağaçlarının nasıl oluşturulacağını belirlemek için kullanılan metrikleri açıklar. Doğruluk, Gini indeksi ve entropi gibi ölçütlerin karar ağaçlarındaki rolünü tartışır.

  • Scikit-Learn Kullanarak Bir Karar Ağacını Üniversite Kabul Veri Kümesi Üzerinde Eğitmek Scikit-Learn kütüphanesi kullanarak gerçek bir veri kümesi üzerinde karar ağacı modeli eğitme sürecini gösterir. Örnek olarak, üniversite kabul veri kümesi kullanılır.

  • Regresyon için Karar Ağaçları Karar ağaçlarının regresyon problemlerinde nasıl kullanıldığını açıklar. Sürekli değişkenlerin tahmini için karar ağaçlarının nasıl yapılandırılacağını gösterir.

Özet:

Bu bölümde, karar ağaçlarının temel prensipleri ve uygulamaları detaylı bir şekilde ele alınmaktadır. Sınıflandırma ve regresyon problemlerinde karar ağaçlarının nasıl kullanılacağı, doğruluk, Gini indeksi ve entropi gibi metriklerin rolü ve Scikit-Learn ile karar ağacı modeli eğitme süreci açıklanmaktadır. Ayrıca, uygulama öneri sistemi ve üniversite kabul veri kümesi gibi gerçek dünya örnekleri ile karar ağaçlarının pratik kullanımı gösterilmektedir .


10. Bölüm: Daha Fazla Güç Elde Etmek için Yapı Taşlarının Birleştirilmesi: Sinir Ağları

Bu bölümde sinir ağlarının temelleri ve uygulamaları ele alınmaktadır. Sinir ağları, makine öğrenimi modellerinin en popülerlerinden biridir ve özellikle derin öğrenme alanında yaygın olarak kullanılır.

İçindekiler:

  • Sinir Ağları Nedir? Sinir ağlarının temel kavramlarını ve nasıl çalıştığını açıklar. Sinir ağları, insan beyninin çalışma prensiplerini taklit eder ve çok sayıda düğüm ve bağlantıdan oluşur.

  • Bir Sinir Ağı Oluşturmak: Sinir ağlarının, algılayıcıların bir koleksiyonu olarak nasıl görülebileceğini açıklar. Düşük boyutlarda doğrusal sınıflandırıcılar olarak, yüksek boyutlarda ise doğrusal olmayan sınıflandırıcılar olarak çalışırlar.

  • Keras Kullanarak Sinir Ağlarını Kodlamak: Keras kütüphanesi kullanarak sinir ağlarının nasıl kodlanacağını ve eğitileceğini gösterir. Adım adım kodlama örnekleri sunar ve sinir ağlarının görüntü tanıma gibi uygulamalarda nasıl kullanılacağını açıklar.

  • Sinir Ağlarının Regresyon Modeli Olarak Kullanılması: Sinir ağlarının sadece sınıflandırma problemlerinde değil, aynı zamanda regresyon problemlerinde de nasıl kullanılabileceğini tartışır.

  • Duygu Analizi ve Görüntü Sınıflandırması için Sinir Ağları: Duygu analizi ve görüntü sınıflandırması gibi uygulamalarda sinir ağlarının nasıl kullanılabileceğine dair örnekler sunar.

Özet:

Bu bölümde, sinir ağlarının temelleri, nasıl oluşturuldukları ve farklı uygulamalarda nasıl kullanıldıkları detaylandırılmaktadır. Sinir ağları, makine öğrenimi modellerinin güçlü bir bileşeni olarak tanıtılmakta ve Keras kütüphanesi kullanılarak pratik örneklerle desteklenmektedir. Ayrıca, sinir ağlarının hem sınıflandırma hem de regresyon problemlerinde nasıl kullanılabileceği açıklanmaktadır .


11. Bölüm: Stil ile Sınırları Bulma: Destek Vektör Makineleri ve Çekirdek Yöntemi

Bu bölümde, destek vektör makineleri (DVM) ve çekirdek yönteminin kullanımı ele alınmaktadır. DVM, iki sınıfı ayıran bir doğrusal sınır bulmayı amaçlayan güçlü bir sınıflandırma modelidir. Çekirdek yöntemi ise doğrusal olmayan sınıflandırma problemlerinde kullanılır.

İçindekiler:

  • Destek Vektör Makineleri Nedir? Destek vektör makinelerinin temel kavramlarını ve nasıl çalıştığını açıklar. DVM, veri noktalarından mümkün olduğunca uzakta bulunan doğrusal sınırı bulmayı amaçlar.

  • Yeni Bir Hata Fonksiyonu Kullanma: Daha iyi sınıflandırıcılar oluşturmak için yeni bir hata fonksiyonunun nasıl kullanılacağını açıklar. Bu hata fonksiyonu, sınıflandırma hatalarını minimize etmek için optimize edilir.

  • Scikit-Learn'de Destek Vektör Makinelerinin Kodlanması: Scikit-Learn kütüphanesi kullanarak DVM'lerin nasıl kodlanacağını ve uygulanacağını gösterir. Adım adım kodlama örnekleri sunar.

  • Çekirdek Yöntemi: Çekirdek yönteminin, doğrusal olmayan sınıflandırma problemlerinde nasıl kullanıldığını açıklar. Çekirdek yöntemi, verileri daha yüksek boyutlu bir uzaya haritalayarak doğrusal olmayan sınırlar oluşturmayı sağlar.

  • Doğrusal Olmayan Sınırlara Sahip DVM'lerin Eğitimi: Doğrusal olmayan sınıflara sahip veri kümeleri üzerinde DVM'lerin nasıl eğitileceğini açıklar. Bu yöntem, karmaşık veri kümelerinde daha yüksek doğruluk sağlar.

Özet:

Bu bölümde, destek vektör makinelerinin temel prensipleri, yeni hata fonksiyonlarının kullanımı ve çekirdek yöntemi detaylı bir şekilde ele alınmaktadır. Scikit-Learn kullanılarak DVM'lerin kodlanması ve doğrusal olmayan sınırlara sahip veri kümeleri üzerinde DVM'lerin eğitimi gibi konular, adım adım örneklerle açıklanmaktadır .


12. Bölüm: Sonuçları Maksimize Etmek için Modelleri Birleştirme: Toplu Öğrenme

Bu bölümde toplu öğrenme (ensemble learning) yöntemleri ele alınmaktadır. Toplu öğrenme, birden fazla modeli bir araya getirerek daha güçlü ve daha doğru tahminler yapmayı amaçlar.

İçindekiler:

  • Toplu Öğrenme Nedir? Toplu öğrenmenin temel kavramlarını ve nasıl çalıştığını açıklar. Toplu öğrenme, birden fazla zayıf öğreniciyi bir araya getirerek güçlü bir öğrenici oluşturmayı amaçlar.

  • Torbalama (Bagging): Torbalama yönteminin nasıl çalıştığını ve bunun doğruluğu artırmada nasıl etkili olduğunu açıklar. Bu yöntemde, veri setleri rastgele örneklenir ve her bir örnek üzerinde ayrı modeller eğitilir.

  • Rastgele Ormanlar (Random Forests): Rastgele ormanlar, torbalama yönteminin bir uygulaması olarak tanıtılır. Bu yöntem, birden fazla karar ağacının bir araya getirilmesiyle oluşturulan güçlü bir modeldir.

  • Boosting: Boosting yönteminin nasıl çalıştığını ve zayıf öğrenicilerin ardışık olarak eğitilerek nasıl güçlendirildiğini açıklar. Her adımda hatalı sınıflandırılan veriler üzerinde daha fazla durulur.

  • AdaBoost: AdaBoost algoritmasının nasıl çalıştığını ve zayıf öğrenicilerin ağırlıklandırılmasıyla nasıl güçlendirildiğini açıklar. AdaBoost, her adımda hatalı sınıflandırmaları düzelterek daha güçlü bir model oluşturur.

  • Gradyan Artırma (Gradient Boosting): Gradyan artırma yönteminin nasıl çalıştığını ve hata fonksiyonunu minimize etmeye yönelik adımlar içerdiğini açıklar. Bu yöntem, her adımda hataları azaltarak modeli güçlendirir.

  • Stacking: Stacking yönteminin nasıl çalıştığını ve farklı modellerin bir araya getirilmesiyle nasıl güçlü bir öğrenici oluşturulduğunu açıklar. Bu yöntem, farklı algoritmaların bir arada kullanılmasıyla daha iyi performans sağlar.

Özet:

Bu bölümde, toplu öğrenme yöntemlerinin temelleri ve uygulamaları detaylı bir şekilde ele alınmaktadır. Torbalama, rastgele ormanlar, boosting, AdaBoost, gradyan artırma ve stacking gibi yöntemler açıklanmakta ve bu yöntemlerin nasıl uygulanacağı adım adım gösterilmektedir .


13. Bölüm: Her Şeyi Uygulamaya Koymak: Gerçek Hayattan Bir Veri Mühendisliği ve Makine Öğrenimi Örneği

Bu bölüm, gerçek dünya verileri üzerinde makine öğrenimi modellerini uygulamalı olarak nasıl kullanabileceğinizi gösterir. Bir veri mühendisinin günlük iş akışını ve makine öğrenimi sürecini ele alır.

İçindekiler:

  • Titanik Veri Kümesi: Bu bölümde, makine öğrenimini öğrenmek için popüler olan Titanik veri kümesini kullanıyoruz. Bu veri kümesi, Titanic'teki yolcuların çeşitli özelliklerini ve hayatta kalıp kalmadıklarını içerir.

  • Veri İşleme ve Temizleme: Veri bilimi sürecinin ilk adımı olan veri temizleme ve ön işleme teknikleri ele alınır. Pandas kütüphanesi kullanılarak veri yükleme, temizleme ve işleme adımları gösterilir.

  • Özellik Mühendisliği: Veri kümesindeki özelliklerin modellenebilir hale getirilmesi için yapılan işlemleri içerir. Özellik mühendisliği, verileri model için daha anlamlı hale getirir.

  • Modellerin Eğitimi: Çeşitli makine öğrenimi modellerinin Scikit-Learn kütüphanesi kullanılarak nasıl eğitileceği açıklanır. Lojistik regresyon, karar ağaçları, naif Bayes, destek vektör makineleri, rastgele ormanlar, gradyan artırma ve AdaBoost gibi modellerin eğitimi gösterilir.

  • Model Değerlendirme: Modellerin doğruluk, kesinlik, geri çağırma ve F1-skoru gibi metrikler kullanılarak nasıl değerlendirileceği anlatılır. Modellerin karşılaştırılması ve en iyi performans gösterenin seçilmesi üzerinde durulur.

  • Hiperparametre Ayarı: Modelin performansını artırmak için hiperparametre ayarlarının nasıl yapılacağı gösterilir. Izgara arama (grid search) yöntemi kullanılarak en iyi hiperparametrelerin nasıl bulunacağı açıklanır.

  • Çapraz Doğrulama: K-kat çapraz doğrulama yöntemi kullanılarak model performansının değerlendirilmesi açıklanır. Bu yöntem, verileri farklı bölümler üzerinde eğitip test ederek modelin genelleştirme yeteneğini ölçmeyi sağlar.

Özet:

Bu bölümde, gerçek bir veri kümesi üzerinde makine öğrenimi modellerini uçtan uca uygulamalı olarak nasıl kullanabileceğinizi öğrenirsiniz. Veri temizleme, özellik mühendisliği, model eğitimi, model değerlendirme, hiperparametre ayarı ve çapraz doğrulama gibi adımlar detaylı bir şekilde açıklanır. Bu süreç, veri bilimcilerinin günlük iş akışında karşılaştıkları problemleri ve çözümleri anlamanıza yardımcı olur .


Ekler

Ek A: Her Bölümün Alıştırmalarının Çözümleri

Bu ek, kitabın her bölümünde yer alan alıştırmaların çözümlerini içermektedir. Alıştırmalar, okuyucunun öğrendiklerini pekiştirmesi ve uygulamalı olarak deneyimlemesi için tasarlanmıştır. Çözümler, doğru yaklaşımları ve yanıtları gösterir, böylece okuyucular kendi çözümlerini kontrol edebilir ve öğrenme süreçlerini iyileştirebilir.

Ek B: Teknik Matematiksel Türevler

Bu ek, gradyan inişi ve diğer makine öğrenimi algoritmalarının matematiksel temellerini daha derinlemesine anlamak isteyen okuyucular için hazırlanmıştır. İçerik, vektörler, türevler ve zincir kuralı gibi matematiksel kavramları kapsar. Bu bilgiler, makine öğrenimi modellerinin iç işleyişini anlamak isteyenler için faydalıdır.

Ek C: Tavsiye Edilen Referanslar ve Kaynaklar

Bu ek, makine öğrenimi konusunda daha fazla bilgi edinmek isteyenler için tavsiye edilen referanslar ve kaynakların bir listesini içerir. Kitaplar, makaleler ve çevrimiçi kaynaklar gibi çeşitli materyallerden oluşur. Bu liste, okuyucuların bilgilerini derinleştirmelerine ve makine öğrenimi alanında daha geniş bir perspektif kazanmalarına yardımcı olacak kaynakları içerir.

Please Select Embedded Mode To Show The Comment System.*

Daha yeni Daha eski

نموذج الاتصال